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SOLUTIONS, WITH A DEGENERATE HODOGRAPH, OF QUASISTEADY EQUATIONS OF 

THE THEORY OF PLASTICITY WITH THE VON MISES YIELD CONDITION 

S. V. Meleshko UDC 5 3 9 . 2  

Simple waves are often used from solutions with a degenerate hodograph in the theory of 
plasticity when the system of equations which describes plastic flow is hyperbolic and has 
two independent variables. There are only isolated instances of the construction of such 
solutions in a plastic body when the number of independent variables is greater than two. 
In this study, we present a complete classification of double waves in the case of a plastic- 
rigid body described by quasisteady equations characterized by functional arbitrariness 

div v --  O; 

~)vi/3x/ + ~)v/Oxi ---- 2LFSu (i, j : 1, 2, 3) 

with the yon Mises yield criterion 

S ~ S ~  -- 2k ~. 

(i) 

(2) 

(3) 

(4) 

Here, (Sij) is the deviator of the stress tensor (S~ = 0); v = (vz, v 2, v3)' is the vector 
of the rate of displacement; o is the normal stress; k is the yield point in shear; �9 is the 
proportionality factor in the associated flow law; summation is performed from 1 to 3 over 
the repeating Greek-letter indices. Without loss of generality, we take S I # 0 (S i m Sii , 
i = i, 2, 3, $3 = -Sl - S2). 

Ov~ 
Equations (3) are inhomogeneous. Since S i # 0, from (3) at i = j = ! we find ~ = S 10x~" 

A f t e r  we e x c l u d e  �9 f r o m  t h e  r e m a i n i n g  e q u a t i o n s  o f  ( 3 ) ,  we o b t a i n  a c l o s e d  h o m o g e n e o u s  s y s -  
tem o f  n i n e  q u a s i l i n e a r  d i f f e r e n t i a l  e q u a t i o n s  r e l a t i v e  t o  n i n e  u n k n o w n s :  ( 1 ) ,  ( 2 ) ,  ( 4 ) ,  
and  

Sl(Ovi/Ox: ~ Ov/~xi) --2SuOu/Ox~ : 0 (i, ] = t, 2, 3). (s) 
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For solutions of system (i)-(2), (4)-(5) of the double-wave type, characterized by func- 

tional arbitrariness in the general solution of the Cauchy problem, there are only two pos- 
sibilities: either functions vz, v 2 such that the Jacobian 8(vz, v2)/8(xl, x2) # 0, or v i = 

v i ( v  1) ( i  = 2 ,  3 ) .  

i. Let the Jacobian 8(vi, v2)/8(xz, x 2) # 0. In this case, the functions vl, v 2 are 
chosen as the parameters of the double wave and all of the remaining parameters (o, Si,j, 
vB) are chosen through them: 

v3 = v3(v,, v2), ~ = ~(vl, v2), S i j  = Si~(vt, vz) (i, ] = 1, 2, 3). ( 6 )  

Insertion of these expressions into (1)-(5) gives us a homogeneous system of quasilinear 
first-order differential equations Gf = 0 with the matrix G, column vector f = (vz,B, v2,B, 

vl z, v2 i, 2, v2 )', = = @v3/Svi, oi = 3o/3vi, ~ = , , vz, ,2 and notation vi, j 8vi/Sxj, v3, i SkJ,i 

~Skj/Svi, v3,in = 82vs/(SviSvn ) (i, n = i, 2; k, j = i, 2, 3). 

To ensure that there is no reduction to invariant solutions [i], it is necessary to 
require satisfaction of the inequality rank G 5 4. Since S l ~ 0, it follows from the form 
of the matrix G that rank G ~ 4. Thus, for double waves that are not reducible to invariant 
solutions, the condition rank G = 4 is satisfied. 

If we use aij to represent the determinant of a fifth-order matrix composed of elements 

of the matrix G standing at the intersection of the first four rows and the i-th row with 
the first four columns and the j-th column, then 

a~j = O, 5 ~ < ~ 8 ,  

while the four independent equations of the system Gf = 0 have the form 

(7) 

where 

OU/OXz = G2OU/OXl; ( 8 )  

Ou/Ox3 = GIOu/Oxl, ( 9 )  

u = (v 1, v2)'; ~ --~ (2S2a - -  28,~v3,~ - -  S,va,2)/St; 

G 2 =  \S~/S1  ' G I =  ~ 0 " 

Certain equations aij = 0 give the relations for finding the function o = o(v I, v2): 

(J1 = - -  $23,1u3,2 -~ $23,2u3,1 -~ S12,2 - -  S2,1, 

(J2 = S13,1u3,2 - -  $13,2U3,l ~- S12,I - -  S1,2- (lO) 

After exclusion of the second derivatives 82u/Sxi3xj (i, j = i, 2, 3, in addition to i = j = 

I), (GiG 2 - G2Gz) 82u/SXz 2 = ~(u, aa/0x]) remains in extended system (8)-(9). This means that 
the maximum possible arbitrariness in the solution of system (8)-(9) with assigned functions 
(6) is determined by the number 2 - r (r ~ rank (GzG 2 - G2Gz)). Thus, it is necessary that 
r 5 1 in order for an ideal plastic-rigid body to contain double waves having functional ar- 
bitrariness in the Cauchy solution and being perpendicular to the invariant solutions. 

We will henceforth write the expression for the matrix 

2 ( Z, Z:/~ 
G~G~--c~G~=~ ( s~z~+s~z~) / s~  - z d  ~ 

where Zz = $23 -- 812v3, I -- $2v3,2; Z 2 = --Sl 3 + SLY3,1 + S12v3, 2 �9 

Let us examine the cases r = 0 and r = 1 in succession. 

i.i. Let r = 0. Then GzG 2 - G2G I = 0 and, thus, Z I = 0, Z 2 = 0 or 

$2~ = $!2v3,1 -i- $2v3,2, $13 =:- $1v3,1 5 -  $1~v.~,2. (lZ) 
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If we completely differentiate D 3 of Eq. (8) with respect to xz, subtract from the re- 
sult Eq. (9) after D 2 has been completely differentiated with respect to xi, and substitute 
the derivatives Ou/Oxi, au/Ox~ from (8) and (9), then with allowance for (ii) we obtain two 
homogeneous invariant forms relative to the first derivatives 0u/&h: 

g(Sr~v3,2~ + Siv3,r ,)  = O, g(S~v3,n - -  S2v3,~.2) = O. (12) 

(0v1~2 Ov~ 0% /0%k2 
Here, g ~ S 2 t - ~ x i ]  --2Sa,,o-~zl~x i - ~ q i  ~b-~x].)" 

It follows from the prohibition on the reduction to an invariant solution that g # 0. 
However, we then find the following from (12) 

v3,12 : --$12v3,2,2/S,, v3,,1 : Sd%,~2/S 1. (13) 

If v3,22 = 0, then v s = clv i + civ 2 + c s (c i = const). By rotating coordinate axes and 
shifting, such a solution is reduced to plane deformation. Thus, v3,22 # 0. 

Satisfaction of (13) ensures identical satisfaction of (12), the latter being necessary 
and sufficient conditions to ensure that redefined system (8)-(9) is involute, it should 
also be noted that the double wave in this case will be a solution with rectilinear genera- 
tors. 

It remains for us to analyze the compatability of Eqs. (4), (7), (ii), and (13)~ Due 
to the cumbersome nature of these calculations, they were performed on a computer [5]. All 
of the components of the stress tensor are determined through the function v3(vl, vi) and 
its second-order derivatives; of Eqs. (7), only (i0) will be independent, and all the remain- 
ing equations are satisfied identically (aks m 0, 5 5 k 5 8); we obtain a redefined system 
of two differential equations for the function v3(vl, vi): one second-order equation and 
one fourth-order equation. These equations are used to derive explicit expressions for all 
fifth derivatives of v3(vl, v 2) with respect to the variables vl and v 2. Thus, vB(vl, v 2) 
is found with a constant arbitrariness. We could not further analyze the compatibility of 
the given system, due to the volume of computation required and the limited computer memory 
available. The system is compatible, and one of its solutions, with arbitrariness in the 
form of two constants, was presented in [2]. The system apparently has no other solutions 
except those in [2]. 

1.2. Let r = i. 
(a m hvB, 2 - v3, i) 

Then rank G = i. This corresponds to satisfaction of the relations 

$23 + hS13 = - - (S lh  -+- S~)a,  

822 - -  3]32 > 0 ;  1~ = ( - -  S12 ~ ( 3 2 2  - -  $152)1 /2) /81  . 

(14) 

(15) 

where 

Since 8(vl, vi)/3(xl, xi) # 0, we make a transition to new independent variables (v I, 
V 2 , X3): 

x! = P(vl, vi, x,), xz = Q(ul, vi, ~ ) .  (16) 

Here,  sys tem ( 8 ) - ( 9 )  fo r  the  f u n c t i o n  v i ( x z ,  x i ,  XB) ( i  = 1, 2) changes i n t o  a sys tem of  
differential equations for the function P(vi, vi, XB) , Q(vz, vi, xs). After certain alge- 
braic transformations, the new system reduces to the form 

S1Pl - -  SiQ2 = O, S1P2 + S1Q1 + 2SnQ.2 = o, 

S~(Q3 + v3,2)Q~ + (2S,2(P3 + v3,2) + S~(p 3 ~- v~ ,~)-  2ZjQ2 = O, 

Si(Pa - /u3 ,JQx - (Sz(Q3 + va,j  + 2ZJQ2 = O. 
(17) 

Here Pi = 8P/Svi, Qi = @Q/Ovi (i = i, 2); P3 = 3P/3x3; Qs = 8Q/@x3; 

P1Q2 - -  PiQ1 =/= O. (18) 
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System (17) is linear and homogeneous relative to Pi, Qi (i = i, 2). 
(18), its determinant must vanish, i.e., (~ = • 

sI(P~ + ~,1) = z2 - sl2(Q~ + ~,~) + ~((Slh + sl~)(q3 + v~,~) - z~). ( 1 9 )  

We then examine two variants ~ = -i and y = +i. 

A contradiction to condition (14) arises at 7 = -i. 

Let 7 = +i. Then after integration of (19) with respect to x 3 

P = hQ + x3a + ~, ( 2 0 )  

where X = • va) is an arbitrary function; a i ~ 3a/Svi; Xi = 3X/Svi; hi ~ 3h/3vi; i = i, 
2. 

Insertion of (20) into (17) with allowance for (15) gives 

Q(h 1 - -  hh2) 4- x~(al - -  hae) -6 %1 - -  h%z = 0; (21)  

SIQ1 ~- (hS1 + $1~)Q2 = --~;  (22)  

Q2(2S1a - -  $1~,~ - -  v3,~(hS~ + S~2))--~Q3 = ~v3,2; (23)  

(2Q~(hS1 - -  S~2) -~ ~)a := 0 ~ ~ SI(h~Q + Xza ~ -[- Z2)). (24)  

We will henceforth study two cases of system (21)-(24): a # 0 and a = 0. 

If a # 0 and hS I + $12 # 0, then it follows from (22) and (24) that QI = hQa. However, 
then a contradiction to condition (18) follows from (21) and (20). Thus, if a # 0, then 
hS l + $12 = 0. This means that ~ = 0. Thus, as in the preceding case, we obtain the con- 
tradiction (18). 

As a consequence, a = 0. In accordance with (15), 

S~3 = - - h S l ~ ,  (25)  

w h i l e  f rom (7 )  and t h e  d e f i n i t i o n  o f  h we o b t a i n  

S~ ~ - - $ 1 ;  (26)  
S~2 -- S~(1 --  h~)/(2h), h =/= O. (27)  

Having i n s e r t e d  ( 2 5 ) - ( 2 7 )  i n t o  t h e  yon Mises  c o n d i t i o n  ( 3 ) ,  we w r i t e  

S~ (t + h2) ~ -~ 4h 2 (1 -~ h ~) S~3 = 4h2k ~. (28)  

With a l l o w a n c e  f o r  ( 2 5 ) - ( 2 8 ) ,  Eqs.  (7 )  c o n v e r g e  o n l y  t o  

h2S~,~ + h S L 2 + S ~ h 2 ( h ~ - - l )  = O. (29)  

Since Qa ~ 0, then we find from (21) that 

h~ = hh2, %1 = h%2. (30)  

If h 2 = 0, then h = const. Analysis of the remaining two equations of (i0) leads only to 
the case when v3 = c~(v2 + hv~) + c2 (c~, c= = const) (and this means a reduction to plane 
strain) or to the case when Sij = const. Thus, it is necessary that h a # 0. Then from the 

condition a = 0 and from (30) we establish that va = v3(h) and • = • 

Since h= # 0, we can replace the variables (v~, v2) by (h, ~), where the function %(v~, 
v~) is such that 

~ : --1/(1 + hZ) 1/~, ~2 = h/(i  + he)l~ ~. (31)  

In  t h e  new v a r i a b l e s ,  Eqs .  (22)  and (29)  t a k e  t h e  form 

h(l  ~- h~)OS~/Oh + S~(h ~ - -  1) = O; (32)  

(l ~- h~)OQ/Oh + hQ = - - h z ' .  (33)  

By virtue of inequality 
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Integrating Eq. (32) over h, we find 

S~ = hc(~)/(i + h~), (34)  

while the relations below follow from Eq. (27) and the yon Mises criterion 

Sn = (1 - -  h~)c(l)/(2(l + h~)), S~  = c~(E)/(i + h~) ~/~, (35)  

where  c ( 1 )  i s  an a r b i t r a r y  f u n c t i o n  and cz = •  ~ - c 2 / 4 )  ~ /2 .  

A f t e r  we i n s e r t  t h e  r e s u l t i n g  e x p r e s s i o n s  f o r  t h e  c o m p o n e n t s  o f  t h e  d e v i a t o r  o f  t h e  
s t r e s s  t e n s o r  ( S i j )  i n t o  ( 1 0 ) ,  we h a v e  c = o ( h )  and 

o'h~ = --  h~v~c~ --  ch~/(l + h ~) - -  c7(2 (~ + h~)~/2). (36)  

E q u a t i o n  (33)  i s  a l s o  i n t e g r a t e d :  

Q = (g(h) + B(~, ~)) / ( l  + ~):/~. (37)  

Here, B(I, x z) is an arbitrary function; the function g = g(h) is such that g' = -hx~/(l + 
h~)~f ~ Here, P~Q~ - PfQ~ = h=(Q + X')8B/31 ~ 0, while since Q3 # 0, then B + g + X'(! + 

h~)~ 2 # 0. As a result, (23) is changed to the form 

OB/OF~ (1 (~, h)/(B + g q- Z' (i ~- h2)~/~)) -~ eOBIOx a ~- 2c~ = 0 
! 

(/=_ ~ (~ + ~) - 2~ (~ + h~)~/~/~ ) (38)  

After we differentiate (38) with respect to h and we use the condition 83/8~ # 0, we 
find 8/Sh)(f/(B + g + k'(l + h2)~/2)) = 0. Since 3B/~x 3 # 0, then 8f/Sh = 0 and f(8/Sh) 

(g + • + hf) ~/2) = 0. 

The condition f = 0 leads to contradictory relations. Thus, we obtain the following 
from the last equations 

Z ~ c3h ~ c~, g ~ --c3(i + h~) 1/2 (c 3, c 4 : const). (39)  

The arbitrary constants c z and c 4 are immaterial. For example, c 3 = c 4 = 0. 

To find 8hf/Sh in 8f/Sh, we use #h-- hf(i+h~ ) ~-, h , Then 

OyOh = 2clh22 (I + h2)li2th~ + c (v~ (~ + h 2) + 2hv~) = 0. (40)  

We w i l l  exa m i ne  t h r e e  c a s e s :  c 1 = 0; c 1 # 0, c '  = 0; c 1 # 0, c '  # 0. 

A. It is assumed that c i = 0. Then we find from (36) that 

I 

o ' = - - c / ( i ~ h 2 ) ~  u ~ = b / ( l ~ h 2 ) ,  c l = q - 2 k  ( b = c o n s t ) .  (41)  

Here, f = cb, and it is easy to write the general solution of (38) 

~B = bx~ + ~(B)  (42)  

with the arbitrary function r Thus, the general solution of the nonreducible double 
wave in the given case has two arbitrary functions with the same argument: one with the def- 
inition h = h(vl, vf), the other with r = ~(B). Let us analyze this solution in the initial 
space of the independent variables (xl, x=, x3). 

The relation h(vl, v 2) = xl/x 2 follows from (16), (20), and (39). The use of (15), 
(37), (39), and (42) yields l(vl, v 2) = ~(bx 3 + #(R))/R, where $ = sgn(xf) , R = (xi 2 + 

x22) I/=. The expressions h = h(vl, v=), I = l(v I, v 2) are used to implicitly find the com- 
ponents of velocity (vl, vf) as functions of the independent variables (xl, xf, xs). 

Having differentiated h = h(vl, v=) and I = %(vi, v=) with respect to x s and having 
made use of (30) and (31), we obtain hSvl/Sx 3 + 8vf/Sx 3 = 0, --Svl/Sx 3 + h3vf/Sx 3 = b/x 2. 
It follows from this that 

ul = - - b x 2 ~ / R 2  ~ gl(xl' ~ ) '  U2 ~ bxlx3/~2 ~ g~(xl' x2)" (43)  
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Before we find the function gi(xz, x=) (i = i, 2), we need to write the expressions for 
the stresses sij, ~, and v s . To do this, by analogy with plane strain we introduce an angle 

8 such that h = (cos 28 - 7)/sin28 (Y = • 

We obtain the following from (34), (35), and (41) 

S ~  = S ~  = O, S~ = - - S ~  ~ - - k s i n 2 0 ,  S~ ~ kcos20, v~ = b O - ~ c s .  
(44) 

Substitution of (43)-(44) into (8)-(9) shows that (9) is satisfied identically, while (8) 
leads to 

~- 2 ctg 20 ~ 4- Og~ og~ Og~ ox -  ~ _  ~ = o ,  ~ + ~ = o .  

The general solution of the last equations will be [3, 4] 

~. = (% + ~ + ~(~ § h~) ~'~)/(~ + h~) ~/~, 

g~, ---- ( ( i  -~- h ~') q~'l - -  h (qb ~- q~) ) / ( i  -6 h~) ~/~ 

while the arbitrary functions ~ = ~(h), 

B_~. Let c I ~ 0, c' = 0. Then from 
(40) over v 2 

)(' l/h~ = (c/2c~ v~(t  + 

~ = ~,(R). 

(36) o' = --c/(l + h2), while after integration of 

(45) 

with the arbitrary function D = p(vl). The form of this function is obtained from study of 
the compatibility condition of the system of two differential equations for the function h = 
h(vl, vz): the first equation of (30) and (45). This system turns out to be compatible 
only if ~ = -2civI/c + cs(c s is an arbitrary constant). Since the determination of the 
function l(vl, v z) is accurate to within the arbitrary constant, then f = -2ciI. Here, the 
general solution of Eq. (38) I = B#(B + 2clxs/c) with an arbitrary function # = r having 
the argument r = B + 2cix3/c. 

Thus, a nonreducible double wave is also associated with general randomness in case 
B - there are two functions with one argument: v 3 = v3(h) and ~ = ~(~). The solution is 
constructed as follows in the initial space of independent variables (xl, x2, xs): we 
first assign arbitrary functions vs(h) and ~(r we then find the function h = h(vl, v 2) 
from the equation 

We then determine the function l(vl, v 2) = -(c/2ci)v3'(i + h 2) + (i + h2)i/2/h2. Finally, 
we reconstruct the components of velocity vl(xl, x2, xs), v2(xl, x2, x s) from the equations 
(~ = sgn (x2)) 

h (~, ~ ) = x j x .  ~ (~,, ~) = ~ (x~ + ~ ) ~  �9 (~ (x~ + x~) ~/~ + 2~j~) .  

The stress state is represented by the relations (c 2 = const) 

S~ = --S~ = hc/(i ~- h2), S12 = (l - -  h2)c/(2(l 4- h~)), 

S13 --- c / ( i  -~ h~) 1/~, $23 ~ --hS13, a---- - - ca r tg  (h)-~c2. 

C. Let c I ~ 0, c' # 0. Then, having differentiated (36) with respect to 8/8h and 
having inserted it into the expression for h22 from (40), we obtain o" + 2ho'/(l + h 2) = 0~ 

From this, o' = b/(l + h 2) (b = const). After we substitute o' into (36) and differentiate 
it with respect to 3/81 (considering that 3/81 = (hS/Sv 2 - 8/8vi)/(i + h2) I/2 and h I = hh=), 

we have c"/h 2 + 3c' (i + h2) -I/2 + vs'c1" (i + h2) I/2 = 0. Alternatively, we exclude h 2 

from the last equation by means of (36), then we can write c"(b + c) - (3/2)(c') 2 + k2(c'/ 

cl')S(vs'(l + h2)) = 0. Since c(1) and cl(1), then vs'(l + h 2) = bl = const. We then find 
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from (40) that h22 = 0. This leads us to the relations h = (c4 - v2)/(v I + c~) and I = 

-(vx + c~)(l + h2)Z/~,, f = cbz - 2czl. Thus, it remains for us to satisfy Eqs. (36) and 
(38). Having inserted h and I into (36), we obtain an ordinary differential equation to de- 
termine c(1) (c~ = a(k 2 - c~/4) ~/~, a = • 

c'()~ -- o~b,c/(4k 2 -- c~) v~) -f- 2(b -~ c) = 0. 

After we find c = c(1) in quadratures we have the general solution of (38) 

with the arbitrary function ~($, ~). 

2. Let us describe the second case, when v i = vi(v l) (i = 2, 3) at S l r 0. 
substitute v i = vi(v I) (i = 2, 3) into (5), we have 

t 

- -  S 2 u '  L + SCv  2 = 0, - -  2S12w , + S l (~v 2 + v~w*) = O, 

After we 

( 4 6 )  

where for the sake of brevity we introduced the notation w i = 8v~/ax i (i = i, 2, 3). 

system (46) is linear and homogeneous relative to w i (i = i, 2, 3) and ~w~54=0, then 

Since 

s ,  + = o, s ,  = o, 
t t * t 

b , ~ v 2  -t- S~2va - -  S,v2va - -  $23 -= O. 

Since the solution reduces to plane strain for v 2' = 0, it must be assumed that v2 ~ # 
0. Then we use the last equations to find expressions for $12 , $2, and $23. Inserting them 
into the yon Mises yield condition, we obtain a quadratic equation for Sz3. It follows from 
this equation that ISz(h + l)h-I/2/(2k)I J 1 (h ~ (v2') 2 + (v3')2). We introduce an angle 

e such that sin% = Sz(h + l)h-Z/2/(2k). 

If S l = S1(v l) (or Q = e(vz)) , then o = o(v I) and the solution is reduced to a simple 
wave. Thus, we choose Sz and v I as parameters of the double wave. Having inserted o = 
o($i, v l) into (i) with allowance for the first two independent equations of (46), we write 

b ~ a s 1 / a x ~  + b i ~ , ,  = 0 (i = t ,  2, 3) .  ( 4 7 )  

The f o r m  o f  t h e  c o e f f i c i e n t s  b i j  ( i  = 1,  2 ,  3 ,  j : 1,  2 ,  3 ,  4 )  i s  q u i t e  c o m p l e x  a n d  i s  n o t  

p r e s e n t e d  h e r e .  We p e r f o r m e d  a l l  s u b s e q u e n t  c a l c u l a t i o n s  on a c o m p u t e r  a s  w e l l ,  a n d  h e r e  
we p r e s e n t  o n l y  t h e  r e a s o n i n g  a n d  t h e  f i n a l  r e s u l t s .  

I n  o r d e r  f o r  t h e  d o u b l e  wave  t o  n o t  r e d u c e  t o  an  i n v a r i a n t  s o l u t i o n  i n  ( 4 7 ) ,  t h e r e  
s h o u l d  b e  no m o r e  t h a n  two i n d e p e n d e n t  e q u a t i o n s .  T h i s  m e a n s  t h a t  t h e  r a n k  o f  t h e  m a t r i x  
B : ( b i j )  m u s t  n o t  be  g r e a t e r  t h a n  t w o .  I f  we u s e  Bj t o  r e p r e s e n t  a s q u a r e  m a t r i x  c o m p o s e d  

o f  t h e  m a t r i x  B w i t h o u t  t h e  j - t h  c o l u m n ,  t h e n  d e t ( B j )  = 0 ( j  = 1,  2 ,  3 ,  4 ) .  E q u a t i n g  d e t  
(B4)  t o  z e r o ,  we o b t a i n  

Oo/OS,((O~/OS,)  ~ -- (h + l )~ (4hcos  20)) - -  0. 

I t  f o l l o w s  f r o m  t h i s  t h a t  e i t h e r  o = o ( v l )  o r  o = •  + l ) h - Z / 2 / ( 2 c o s O )  + ~ ( v z ) .  H a v i n g  
i n s e r t e d  t h e  e x p r e s s i o n s  f o r  o i n t o  d e t  (B s )  = 0 ,  i n  b o t h  c a s e s  we o b t a i n  a p o l y n o m i a l  i n  
t a n  0 w i t h  c o e f f i c i e n t s  d e p e n d e n t  on v z .  S i n c e  0 a n d  v l  a r e  a s s u m e d  t o  b e  f u n c t i o n a l l y  i n d e -  
p e n d e n t ,  t h e n  t h e s e  c o e f f i c i e n t s  s h o u l d  v a n i s h .  H o w e v e r ,  t h e r e  a r e  c o n t r a d i c t o r y  e q u a l i t i e s  
among t h e  r e l a t i o n s .  F o r  e x a m p l e ,  h + 1 = 0.  T h u s ,  i n  t h e  g i v e n  c a s e ,  when v i = v i ( v z )  
( i  = 2,  3 ) ,  t h e r e  a r e  no d o u b l e  w a v e s  t h a t  c a n n o t  be  r e d u c e d  t o  i n v a r i a n t  s o l u t i o n s  o r  s i m -  
p l e  waves. 

i .  
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THERMOELASTIC STRESSES IN A PLANE WITH A CIRCULAR INCLUSION IN THE 

PRESENCE OF A THERMAL SPOT OF ELLIPTICAL SHAPE 

L. G. Smirnov and I. I. Fedik UDC 539.412 

The problem of determining the thermostress state of a body during heating by a spot 
occupying a certain domain reduces to a problem of determining the elastic stresses for 
given discontinuities in the displacements on the spot boundary [i]. This latter is equiva- 
lent to the problem of determining the elastic stresses caused by the presence of an inclu- 
sion preliminarily subjected to intrinsic strain and having elastic characteristics as also 
the surrounding medium and then inserted in the hole occupied by the spot domain [2]. Utili- 
zation of the Muskhelishvili method in the plane case permits reducing this problem to a 
standard boundary value problem of elasticity theory for the whole domain occupied by the 
body with altered external forces [2]. When the spot is circular in shape, the solution can 
be found in closed form [3-5]. The solution of the problem of determining the stresses in 
a half-plane for an elliptical spot shape and constant magnitude of the heating AT is also 
written in closed form [6]. This paper is devoted to obtaining such a solution for a plane 
with a circular foreign inclusion for an elliptical spot shape and AT = const. 

Let an elastic plane with a circular foreign inclusion be heated over a certain domain 
D bounded by the contour L from an initial temperature T o for which there is no stress state 
to a temperature T I. It is assumed that the contour L does not intersect the circle L 0 
bounding the foreign inclusion and can be a system of nonintersecting closed contours Lj 

(j = i, 2, ..., n). Without limiting the generality, we will consider the contour L to con- 
sist of two contours LI and L 2 bounding domains Dl + and D2 + lying entirely within and out- 
side the circle L0, respectively. The domain lying between the contours L0 and LI is de- 
noted by D I- and the domain between L 0 and L a by D2-. It is known [2] that the stress state 
that occurs is equivalent to that which occurs in inclusions occupying the domain Dj + first 

subjected to intrinsic strain and from the same material as its external medium, and then 
installed in holes with the contours Lj (j = i, 2 ..... n). 

Let us assume the center of the circular foreign inclusion of radius R 0 to be at the 
origin of the x, y plane, and pj, vj, ~j to be the shear modulus, Poisson ratio, and coeffi- 

cient of thermal expansion of the materials of the foreign inclusion (j = i) and its exter- 
nal medium (j = 2). We use the Muskhelishvili method to find the stress state. Considering 
that an ideal contact holds on the common boundary of the inclusion with the medium, the con- 
ditions of equality of the normal and tangential stresses as well as the presence of a dis- 
placement jump on the interfacial lines of the media caused by the intrinsic strains are 
written in the form 

r q- t~po'(t) + ~ o  (t) = ~p-(t) q- tcp- ' ( t )  § r  (t) + C~, 

( •  (t) - -  t ~ o ' ( t  ) - -  ~ o ( t ) ) / p ~  = ( •  - - t  r  - -  ~2- (t))/~t~ (t ~ Lo); 

~+ (t) + t~o (t) + ~,~ (t) = ~-j(t) + t~o (t) + ~ ( t )  + G ,  

•162 + (t) - -  t~+ '  (t) - -  ~+( t )  = •  - -  t ~ o '  (t) - -  ~ o  (t) + 2~qg~ (t) (t ~ L~); 

(1) 

(2) 
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